Lower Bounds on the Dilation of Plane Spanners
نویسندگان
چکیده
I) We exhibit a set of 23 points in the plane that has dilation at least 1.4308, improving the previous best lower bound of 1.4161 for the worst-case dilation of plane spanners. (II) For every n ≥ 13, there exists an n-element point set S such that the degree 3 dilation of S equals 1 + √ 3 = 2.7321 . . . in the domain of plane geometric spanners. In the same domain, we show that for every n ≥ 6, there exists a an n-element point set S such that the degree 4 dilation of S equals 1+ √ (5− √ 5)/2 = 2.1755 . . . The previous best lower bound of 1.4161 holds for any degree. (III) For every n ≥ 6, there exists an n-element point set S such that the stretch factor of the greedy triangulation of S is at least 2.0268.
منابع مشابه
Homotopic spanners
We introduce the concept of homotopic spanners in the plane with obstacles and show lower bounds on the number of edges that they require. We also provide a construction based on Θ-graphs for constructing homotopic spanners.
متن کاملEuclidean spanners in high dimensions
A classical result in metric geometry asserts that any n-point metric admits a linear-size spanner of dilation O(log n) [PS89]. More generally, for any c > 1, any metric space admits a spanner of size O(n), and dilation at most c. This bound is tight assuming the well-known girth conjecture of Erdős [Erd63]. We show that for a metric induced by a set of n points in high-dimensional Euclidean sp...
متن کاملLower Bounds for Computing Geometric Spanners and Approximate Shortest Paths
We consider the problems of constructing geometric spanners, possibly containing Steiner points, for sets of points in the d-dimensional space IR d , and constructing spanners and approximate shortest paths among a collection of polygonal obstacles in the plane. The complexities of these problems are shown to be (n log n) in the algebraic computation tree model. Since O(n log n)-time algorithms...
متن کاملOn Spanners and Lightweight Spanners of Geometric Graphs
We consider the problem of computing spanners of Euclidean and unit disk graphs embedded in the two-dimensional Euclidean plane. We are particularly interested in spanners that possess useful properties such as planarity, bounded degree, and/or light weight. Such spanners have been extensively studied in the area of computational geometry and have been used as the building block for constructin...
متن کاملBounds on $m_r(2,29)$
An $(n, r)$-arc is a set of $n$ points of a projective plane such that some $r$, but no $r+1$ of them, are collinear. The maximum size of an $(n, r)$-arc in PG(2, q) is denoted by $m_r(2,q)$. In this paper thirteen new $(n, r)$-arc in PG(2,,29) and a table with the best known lower and upper bounds on $m_r(2,29)$ are presented. The results are obtained by non-exhaustive local computer search.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Int. J. Comput. Geometry Appl.
دوره 26 شماره
صفحات -
تاریخ انتشار 2016